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Abstract

In recent years, ecologists and epidemiologists have paid increasing attention to the

in¯uence of spatial structure in shaping the dynamics and determining the persistence of

populations. This is fundamentally affected by the concept of `coupling'Ðthe ¯ux of

individuals moving between separate populations. In this paper, we contrast how

coupling is typically implemented in epidemic models with more detailed approaches.

Our aim is to link the popular phenomenological formulations with the results of

mechanistic models. By concentrating on the behaviour of simple epidemic systems, we

relate explicit movement patterns with observed levels of coupling, validating the

standard formulation. The analysis is then extended to include a brief study of how the

correlation between stochastic populations is affected by coupling, the underlying

deterministic dynamics and the relative population sizes.
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I N T R O D U C T I O N

Spatially structured models and emergent heterogeneity are

becoming increasingly important features of ecological and

epidemiological modelling ( Tilman & Kareiva 1997; Rohani

et al. 1999; Dieckmann et al. 2000; Jansen & Lloyd 2000;

Bascompte & SoleÁ 1998). One of the most common forms

of capturing the effects of space is the patch or metapopu-

lation model (Levins 1969; Allen 1975; Hassell et al. 1991;

Rohani et al. 1996; Ruxton 1996; Hanski & Gilpin 1997;

Keeling 2000). Such models consist of multiple subpopu-

lations with movement (or `coupling') between them, and

hence provide an ideal framework for studying the dynamics

of diseases within human communities (Grenfell &

Harwood 1997).

Generally, increasing the strength of coupling between

populations reduces spatial variation and acts to synchronize

their dynamics. Suf®ciently strong coupling may eventually

lead to perfect synchrony or `phase-locking'. The extent of

this effect is, however, known to depend on the precise

geometry of the coupling and the intrinsic patch dynamics

(Adler 1993; Allen et al. 1993; Ruxton & Rohani 1998;

Bjùrnstad 2000; Earn et al. 2000). Spatial synchrony is a key

ecological (and epidemiological) phenomenon since it can

profoundly affect the likelihood of metapopulation persist-

ence. In the absence of spatial synchrony we observe rescue

effects, which prevent localized (subpopulation-level)

extinctions either from occurring or becoming permanent,

thus increasing the probability of global persistence (Brown

& Kodric-Brown 1977; Ranta et al. 1997; Earn et al. 1998,

2000; Hanski 1998; Keeling 2000).

Coupling between distinct populations can take a variety

of forms. In most models of ecological population

dynamics, coupling arises primarily from migratory dispersal

(Hanski 1998). Hence, the important features are those

determining individual movement behaviours, which are

quanti®able (though the precise estimation of these is

often very time-consuming and rarely straightforward). In

epidemiological systems, we are primarily concerned with

the transfer of infection, which may occur via different

routes. For sessile organisms such as plants, coupling is

often due to external transport (e.g. by wind or insects) of

the pathogen (Jeger 1989; Swinton & Gilligan 1996). A

similar mechanism of dispersal largely accounts for the

spread of diseases such as foot-and-mouth disease or swine-

fever between farms (Keeling et al. 2001b). If one is

interested in the epidemiology of childhood infections (such

as measles or whooping cough), however, two important

distinctions must be made.

Firstly, since these infections are directly transmitted,

external transportation agents are not involved. Second, and

more importantly, coupling no longer refers to the
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permanent translocation of individuals or infection from

one centre to another. Instead, it is concerned with the

relative levels of `mixing' within and between populations,

with temporary movement assuming a far more signi®cant

role. Unfortunately, good data on relevant human mobility

patterns are hard to ®nd. We do, however, have access to

excellent data sets on the spatio-temporal incidence of

childhood infections (Keeling & Grenfell 1997; Rohani et al.

1998, 1999). From these data we can estimate the

correlation between epidemics in different populations,

and attempt to infer possible movement patterns.

In this paper, we will use the classic SIR (Susceptible±

Infectious±Recovered) framework for disease dynamics to

investigate the role of movement between human popula-

tions. First we consider how models with simple phenom-

enological coupling can be related to more complex

mechanistic models which explicitly describe the movement

of individuals between populations. While this relationship

takes a simple form when the two populations are of equal

size, it is far more complicated given hierarchical popula-

tions. In the ®nal section, we attempt to link models with

data by relating variation in correlation with coupling

strength and how this is affected by population size and the

inherent population dynamics.

T H E M O D E L

We shall take as our basic framework the standard SIR

model (Anderson & May 1991), where individuals are

classi®ed according to infection status (susceptible, infec-

tious or recovered):

dS

dt
� bN ÿ b�t�SI=N ÿ dS

dI

dt
� b�t�SI=N ÿ gI ÿ dI �1�

dR

dt
� gI ÿ dR;

where N ( � S + I + R) is the total population size, b and

d determine the per capita birth and death rates, respectively,

and g)1 gives the infectious period. The parameter b
represents the disease transmission rate and is often

assumed to be constant, giving rise to damped oscillations

in the deterministic model. In some of the best studied cases

(e.g. childhood microparasitic infections), there is strong

seasonal variation in contact rates and b is time-dependent;

this may lead to more exotic dynamics (Schwartz & Smith

1983; Glendinning & Perry 1997; Earn et al. 2000; Keeling

et al. 2001a). In most of the analysis that follows, we assume

it to be constant, although we comment on numerical

®ndings for seasonally forced models. We also set the birth

and death rates to be equal (b � d ) such that the total

population size, N, remains constant.

L I N K I N G C O U P L I N G A N D M O V E M E N T P A T T E R N S

In systems where a number of populations are coupled

together, the effect of spatial structure is commonly

achieved by allowing the `force of infection' (the per capita

likelihood of contracting the infection; Anderson & May

1991) in each population to be in¯uenced by the level of

infectious individuals in the other population (Lloyd & May

1996; Bolker & Grenfell 1995; Earn et al. 1998; Rohani et al.

1999; Keeling 2000). For example, for a system of two

identical populations (N1 � N2 � N ), the spatially struc-

tured set of equations are given by:

Population 1

dS1

dt
� bN ÿ bS1�I1�1ÿ r� � I2r�=N ÿ dS1

dI1

dt
� bS1�I1�1ÿ r� � I2r�=N ÿ gI1 ÿ dI1

8>><>>:
Population 2

dS2

dt
� bN ÿ bS2�I2�1ÿ r� � I1r�=N ÿ dS2

dI2

dt
� bS2�I2�1ÿ r� � I1r�=N ÿ gI2 ÿ dI2:

8>><>>:
�2�

The parameter r de®nes a `coupling strength' and is related

in a phenomenological way to the movement rate between

the two populations. Note that r merely re¯ects how much

`mixing' exists between the two populations, measuring the

proportion of infection that occurs between rather than

within patchesÐit does not specify a dispersal rate. The

precise formulation of Equation (2) is chosen such that

the basic reproductive ratio, R0 � b/g, remains constant as

the strength of the coupling, r, changes. This is a consistent

feature of all the models given in this paper, and is vital if we

are to reliably compare models with different couplings.

Such a method of coupling populations is clearly an over-

simpli®cation of the true interactions between communities,

although it has been widely used in the literature (Grenfell

et al. 1995; Bolker & Grenfell 1996; Lloyd & May 1996;

Swinton et al. 1998; Rohani et al. 1999; Earn et al. 2000).

Implicit within this formulation is the idea that infectious

individuals from population 1 can infect susceptibles in

population 2, but this is achieved without any explicit

mechanism for the transfer of infection. The primary aim of

this paper, therefore, is to understand how basic movement

patterns affect the overall `coupling' between populations.

In order to construct a more mechanistic model, we need

to specify the exact mixing patterns between the popula-

tions. The precise mechanisms by which infections are

transferred to new centres are dif®cult to establish. Clearly,

they involve the interchange of individuals between popu-

lations, but without precise data on patterns of human

mobility, it is hard to describe what may be `realistic'.

We shall initially consider the interaction between two
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populations of the same size. Individuals may leave their

`permanent' population and enter the other (`temporary')

population, where they will remain for a given period of

time. Within each population, we have SIR dynamics.

The nomenclature for this model involves identifying all

individuals by two subscripts, such that Sxy refers to

susceptibles from population x that are currently situated

in population y. This allows us to explicitly model the

movement of individuals back and forth between the two

populations (Fig. 1) and to quantify the effects of this

movement on the epidemiological coupling. In this mech-

anistic model, infection can only occur when both suscept-

ible and infectious individuals are present in the same

population. We assume infection operates as pseudo mass-

action (de Jong et al. 1995; McCallum et al. 2001), although if

both populations are initially of equal size this assumption

has no bearing on the dynamics. The equations have three

separate components, births and deaths, infection, and

movement between populations; for example, the dynamics

of Sxx are given by:

dSxx

dt
� bNxx ÿ dSxx ÿ bSxx�Ixx � Iyx�=�Nxx �Nyx�
� sSxy ÿ qSxx ;

where q and s are the rates at which individuals leave and

return to their home location, respectively (as shown in

Fig. 1). The remaining equations are given in Appendix 1.

For convenience, we de®ne and formulate results in terms

of the parameter l � q/s, which measures the ratio of time

spent in the temporary to the permanent population.

In this (unforced) system, for most biologically realistic

parameters, the population levels rapidly converge to an

equilibrium such that the number of individuals in the

permanent and temporary location are related by:

Nxy

Nxx

! l: �3�

Assuming this rapid population level convergence has

already occurred, our mechanistic model (Appendix 1,

equation 6) is an eight dimensional system, which we would

like to equate with the much simpler four dimensional

phenomenological model (equation 2). We achieve this by

considering the eigenvalues of each system, and comparing

how rapidly the populations converge in each formulation.

In these unforced models, we always observe convergence of

the two populations to a stable equilibrium point. By adding

coupling between the populations the basic rate of conver-

gence can be increased; and it is this increase that permits us

to equate a level of coupling (r) from equation (2) with

mechanistic movement rates (q, s ) from equation (6).

For all reasonable choice of parameters, the eigenvalues

of the simple uncoupled and unforced model (equation 1)

are complex conjugates, k�0 and kÿ0 , with negative real parts.

This corresponds to damped oscillations towards the ®xed

point (Anderson & May 1991). We expect the behaviour

dictated by this pair of eigenvalues to dominate the

behaviour of both the phenomenological and mechanistic

models. Since the coupled system (equation 2) is four

dimensional, it has two pairs of eigenvalues (k�1 ; k
ÿ
1 ) and

(k�2 ; k
ÿ
2 ). One pair is always equal to the eigenvalues of the

uncoupled system (without loss of generality, we assume

that k�2 � k�0 ) and provides information on the conver-

gence to the ®xed point. The second set of eigenvalues (k�1 )

determine the speed with which trajectories in the two

populations approach each other.

In Fig. 2(a), we plot the value of Real (k�1 ÿ k�0 ), which

measures the extra rate of convergence of the two

populations towards each other in addition to the normal

convergence to the ®xed point. The ®gure demonstrates

that below some critical level (rc » 0.1) greater coupling

increases the synchronizing effect, and this is re¯ected by a

more rapid convergence of trajectories in different popu-

lations towards each other. Above the critical coupling level,

the eigenvalues k�1 become real and so two values are

observed in Fig. 2(a). In this region, increasing the coupling

r generally leads to slower convergence, as the larger

eigenvalue dominates. Therefore, at the critical level of

coupling, convergence and hence synchrony of the two

populations is maximized.

The mechanistic model is described by a set of eight

differential equations and therefore has four pairs of

eigenvalues, which we denote by, K�n , (n � 1, ¼, 4). Two

of these pairs (say, K�3 and K�4 ) are large and negative; these

correspond to the rapid distribution of individuals between

the permanent and temporary populations, and can be

ignored (for our purposes). Another pair of eigenvalues, say

K�2 , are equal to the eigenvalues of the uncoupled system

NN11

NN21

NN22

NN12

ττ

ττ

ρ=µτ
Population 2

Population 1

Figure 1 Schematic representation of the movement of infected

individuals between two populations. Individuals in their perma-

nent population (N11 and N12) visit the other, temporary popula-

tion at rate q � ls, those individuals in the temporary population

(N12 and N21) return at rate s.
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(equation 1). This again leaves just one pair of eigenvalues

remaining (K�1 ) to determine the effects of coupling on the

disease dynamics. Comparing K�1 �l; s� with K�1 �r�, allows

us to determine a relationship between the parameters of the

two models.

Figure 2(b) shows the level of simple phenomenological

coupling r corresponding to the mechanistic parameters s, g

and l. We note from the graph that the coupling is maximized

when the returning rate (s) is large (such that there is rapid

mixing between the populations) and when individuals spend

equal times in each population (l � 1). When s is small,

individuals spend a long time away from their permanent

population, it is therefore quite likely that if they catch the

disease they pass into the recovered class before they return

Figure 2 (a) Comparison between the ei-

genvalues of the 4-dimensional coupled

system (equation 2), k�1 , and the eigenvalue

of the 2-dimensional SIR model (equation

1), k�0 . We note that Real(k�1 ÿ k�0 ) is always

negative indicating faster convergence in the

coupled model. For levels of coupling, r,

above 0.1 the eigenvalues k�1 are real and

hence two curves exist on the graph. (b) The

relationship between occupancy ratio, l, the

relative return rate,
s
g , and the phenomeno-

logical coupling, r. Note that the coupling

reaches a maximum when l � 1 such that

equal time is spent in both populations.

Asymptotic behaviour is reached whenever

the movement rate s is large compared to

the recovery rate g. (b � d � 5.5 ´ 10)5

days)1, g)1 � 13 days, R0 � b
g � 17).
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home. Small values of s mean that individuals cannot carry the

disease between the two populations and hence there is a

reduction in the amount of coupling.

It is interesting to note that in general as the infectious

period changes, so does the relationship between l, s and r.

Thus, although the movement patterns are determined by

the population and are independent of the disease, the

epidemiological differences in the infectious period mean

that the precise value of r will be disease dependent.

Analysis shows that it is the length of the infectious period

relative to the average time spent away from home (s/g) that

determines the level of coupling (assuming that the

infectious period is much shorter than the life expectancy).

We notice that when the time spent in the temporary

population is smaller than the infectious period s)1 < g)1,

the eigenvalues are very close to the large s limit (see below).

Intuitively, in most applied settings we might expect short

stays in comparison to the infectious period so the precise

value of s and g are likely to be unimportant. (For infections

like measles and whooping cough, we are dealing with

infectious periods of 5 and 15 days, respectively, and an

intuitive assumption would be that `mixing' occurs on the

scale of a day). Therefore, in such cases it may be

appropriate to study the large s limit, where precise disease

parameters do not affect the level of coupling.

When the returning rate (s) is very high, it is possible to

obtain a simple algebraic relationship between the strength

of coupling (r) and distribution of individuals (l). This is

due to the rapid convergence of the distribution of

individuals between the two populations such that,

Nxy ! lNxx Sxy ! lSxx Ixy ! lIxx :

Summing the differential equations for the number of

susceptible individuals whose permanent home is popula-

tion x gives:

dSx

dt
� d

dt
�Sxx � Sxy�

� bN ÿ bSx

1� l2

�1� l�2
" #

Ix � 2l

�1� l�2
" #

Iy

 !
=N ÿ dSx

with a similar equation for Ix. These are clearly identical to

the phenomenological equation (2) with the strength of the

coupling as given by

r � 2l

�1� l�2 : �4�

Hence in the majority of applied settings when s is large

compared to g, the full mechanistic model rapidly converges

to the much simpler coupled model, and there is a simple

relationship between the parameters of the two models.

A similar theory relating phenomenological coupling to

movement parameters can be developed for the more

realistic situation where the two coupled populations are of

different sizes (Appendix 2). The analysis shows that given

identical intrinsic movement rates in the two populations,

coupling levels are identical except for a scaling factor

determined by the relative population sizes.

C O R R E L A T I O N S F O R C O U P L E D S T O C H A S T I C

M O D E L S

Although a detailed social survey may allow us to estimate

the parameters l and s and therefore ®nd a corresponding

value of r, for many diseases we are simply faced with the

number of reported cases in each community. In this

section, using a stochastic or Monte Carlo version of

equation (2) (Renshaw 1991), we compare the correlation

between cases in two model populations, with the level of

coupling r. With this stochastic model, all events (birth,

death, infection and recovery) occur at random, but with the

same underlying rate as predicted by the differential

equations. In addition, to prevent permanent stochastic

extinctions of the disease, a small immigration rate (e) of

infectious individuals was added to the model.

For the time-series of infectious cases from the two

populations, I1(t) and I2(t) the correlation is de®ned as,

C � hI1I2i ÿ hI1ihI2i������������������������������������������������������
hI 2

1 i ÿ hI1i2
ÿ � hI 2

2 i ÿ hI2i2
ÿ �q

Here h�i corresponds to the long-term average. Figure 3(a)

shows the correlation (as calculated from a 5000-year sample)

for two populations of equal size N, with coupling r.

Theoretical prediction

By formulating an equation for the covariance between the

number of infectious individuals in the two populations, we

can begin to understand the behaviour of the correlation.

This is achieved using moment closure approximations

(Renshaw 1991; Keeling 2000) in which means, variances

and covariances are modelled but third order cumulants are

ignored. As detailed in Appendix 3, we obtain the following

approximation for the correlation,

C � r
n� r

: �5�

where n is a parameter which can be estimated from

numerical simulations. In Fig. 3(a) , we ®nd that n » 0.0119,

and is independent of population sizeÐthe shaded curves

show the theoretically predicted correlation using this value.

Thus, for a given disease and set of demographic parameters,

there is a unique curve relating the amount of correlation

observed with the strength of coupling. Hence, this result

allows us to infer individual level parameters from global

behaviour. Given the disease dynamics of two simple

24 M.J. Keeling and P. Rohani
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coupled populations, it is possible to calculate the phenom-

enological level of coupling and therefore the individual

movement rates between the populations.

Figure 3(b) shows the value of n which provides the best

®t to stochastic simulation results for a range of disease

parameters. Again we ®nd that equation (5) provides a good

description of the correlation. The parameter, n, is large

whenever both R0 and the infectious period ( g)1) are large;

in this region of parameter space the correlation C increases

slowly and almost linearly with the coupling. The increase in

n for small values of R0 may be attributed to frequent

extinctions within the model populations. In this regime the

theoretical prediction is less accurate, but still gives a good

qualitative description of the relationship between correla-

tion and coupling.

Spatial complexity and seasonality

So far we have only considered the unforced system (which

possesses a globally stable ®xed point) and two isolated

populations. In this section we shall consider the dif®culties

that arise in real applications when there is often strong

seasonality and as well as coupling between numerous

locations.

To capture the cyclic behaviour observed for many

diseases, seasonality in the contact parameter b has to be

Figure 3 The correlation between number

of infectious individuals in two populations

using a stochastic (Monte Carlo) version of

the coupled model (equation 2). Part (a)

clearly shows that the correlation is largely

unaffected by population size, and that the

simulation results are a close ®t to the the-

oretical predictions (thick lines). (b � d �
5.5 ´ 10)5 days)1, g)1 � 13 days, R0 �
b
g
� 17, n � 0.0119, following the work

of Bartlett (1956) the import rate was chosen

as e � 5.5 ´ 10)5 ÖN days)1). Part (b) gives

the value of n which provides the best ®t to

the correlation, in terms of minimizing the

mean squared error. The shaded square

corresponds to the epidemiological parame-

ters used throughout the rest of the paper.

(b � d � 5.5 ´ 10)5 days)1, r � 10)3 to

0.5, N � 105.
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included (Fine & Clarkson 1982; Schwartz & Smith 1983).

Here we use the formulation estimated for measles

dynamics, where b takes a high value during term-times

and a lower value during school holidays (Fine & Clarkson

1982; FinkenstaÈdt & Grenfell 2000). This produces biennial

dynamics in the deterministic model for measles parameters

in developed countries (Anderson & May 1991; Keeling

et al. 2001a).

When seasonality is included, we need greater care in

comparing the dynamics of the two populations. What we

wish to measure is the correlation in the deviation from the

average cyclic pattern. With measles parameters, for

example, it becomes necessary to de®ne a separate

correlation Ct for every point t (0 £ t £ 2 years) on the

biennial attractor. The correlation between two cyclic

populations can then be taken as the average over the

entire cycle of the separate correlations. With this modi®ed

de®nition of C, we ®nd that the theoretical prediction

(equation 5) remains a reliable approximation. We note that

if the cyclic dynamics were ignored, and we simply

calculated the correlation in the standard manner, then

synchronization (or phase-locking) of the epidemics in the

two communities would produce much higher correlations

than expected when the populations are large (N > 105 ).

This methodology must be used with caution. For some

diseases, such as whooping cough (Rohani et al. 1999) or

rubella (Anderson & May 1991), seasonal changes drive

irregular epidemics. Other diseases (for example in¯uenza)

are dominated by localized extinctions and subsequent

recolonization, as well as other complications relating to

antigenic variation. For such diseases, it is dif®cult to de®ne

an average cyclic pattern, and our theoretical approximation

breaks-down whenever deterministic epidemics become out

of phase.

Most applied situations also require us to consider multiple

populations with different degrees of coupling between them.

A complete analysis of all the vast number of possible

scenarios is not feasible. Here, we note in brief the results

from two simple spatial con®gurationsÐarranging n identical

populations in a line with either local or global coupling. For

both these situations the same basic theoretical relationship

between coupling and correlation still holds. With global

coupling (every population coupled to every other population

with strength r) the value of n shows a very slight decrease

with the number of populations. For local coupling the

situation is more complex, n increases as we look at the

correlation between ever more distant populations.

C O N C L U S I O N S

In human epidemiology, the interaction between discrete

settlements can have a profound dynamic effect and

important public health consequences. Most notably,

re-infection from an external source (rescue effects) plays a

signi®cant role in the global persistence of many diseases

(Grenfell et al. 1995; Grenfell & Harwood 1997). It is

therefore important to have reliable models for the interaction

between communities. We have established a clear equival-

ence between the standard phenomenological models of

coupling, and a more mechanistic approach based on

individual movement patterns. While this research has been

primarily driven by patterns of human mobility, our approach

should be applicable to any territorial organism, which spends

short periods away from its permanent population.

The relationship between the phenomenological coupling

and the mechanistic movement rates can be calculated

numerically for any combination of disease and demogra-

phic parameters. It is interesting to note that the level of

coupling is sensitive to the length of the infectious period, as

well as on the movement rates. Despite identical underlying

movement behaviours, the coupling between communities

is disease dependent. This is because when the infectious

period is short and the length of stay in the temporary

population long, it is unlikely that an individual can acquire

the disease in one population and return home before

recovering. However, for most human infections the time

spent out of the home population is short relative to the

incubation period of the disease. In this case, there exists an

exact analytical relationship between the phenomenological

and the mechanistic models,

r � 2l

�1� l�2 :

For most human populations, it is dif®cult to assess the

level of movement between different communities. Even

when records of travel do exist, they are rarely strati®ed

suf®ciently for us to identify the potential mixing between

susceptible and infectious individuals. For childhood dis-

eases, the distribution of disease is age dependent, so

information on the movement rates of recovered adults is

irrelevant; similarly for sexually transmitted diseases, the risk

associated with each individual is highly variable and not

easily ascertained. Often, however, we have extremely

detailed reports of the number of cases in each community.

Stochastic simulations are used to generate surrogate data

for two coupled populations. Results from these simulations

agree with simple analytical predictions that in many

situations the correlation, C, is related to the coupling, r, by

C � r
n� r

where n is a function of the particular disease parameters,

but does not depend upon population size.

This work has mainly focused on the most tractable

scenario, the interaction between two communities of equal

size where the underlying disease dynamics possess a ®xed
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point attractor. However, some consideration has also been

given to the three main complications: different sized

populations, cyclic dynamics and multiple interacting pop-

ulations.

· When the populations are of different sizes, we again ®nd

that a phenomenological model is equivalent to the

mechanistic form, although four distinct coupling param-

eters become necessary. If we again assume that visits to

another population are of much shorter duration than the

infectious period then a simpli®ed analytical approxima-

tion with just two coupling parameters is achieved.

Correlations between populations of vastly different sizes

do not agree well with the theoretical formula, but it still

provides a good approximation when the population sizes

are within an order of magnitude of each other.

· If the dynamics have a regular cyclic pattern, then we

must subtract this pattern from the time-series before

calculating the correlation; hence we are looking at the

correlation between the deviations away from the

attractor. The correlation then obeys the same formula

as before, with a similar n value as a non-cyclic (non-

seasonally forced) model. When diseases are strongly

in¯uenced by stochastic forces and epidemics are irregular

and out of phase, it is dif®cult to assess the effects of any

small degree of coupling.

· When many populations interact, the array of possible

mixing patterns is vast. Concentrating only on local and

global interactions, with equal coupling strengths, we

®rmly believe that the same relationship between corre-

lation and coupling still exists, although the value of n
may depend on the number of populations and the nature

of the coupling.

Throughout we have assumed an SIR-type formulation,

so that individuals are infectious as soon as they are infected.

However, for many diseases the SEIR model (Anderson &

May 1991) is more appropriate; this introduces an exposed

class when individuals are have caught the pathogen, but are

incubating the disease and are not yet infectious. All of our

results transfer in the obvious manner to this SEIR model,

with very little change in the behaviour or quantitative

predictions.

We have found clear analytical relationships between the

individual movement patterns and phenomenological coup-

ling, and then between coupling and the observed correla-

tions. These relationships fairly robust, and therefore

provide us with an important tool for analysing disease

dynamics in a spatial context.

A C K N O W L E D G E M E N T S

We thank the four anonymous referees for their comments

on this paper. This research was supported by the Royal

Society (MJK and PR).

R E F E R E N C E S

Adler, F.R. (1993). Migration Alone can Produce Persistence of

Host-Parasitoid Models. Am. Naturalist, 141, 642±650.

Allen, J.C. (1975). Mathematical models of species interactions in

time and space. Am. Naturalist, 109, 319±342.

Allen, J.C., Schaffer, W.M. & Rosko, D. (1993). Chaos reduces

species extinction by amplifying local population noise. Nature,

364, 229±232.

Anderson, R.M. & May, R.M. (1991). Infectious Diseases of Humans.

Oxford University Press.

Bartlett, M.S. (1956). Deterministic and stochastic models for

recurrent epidemics. Proceedings of the of the Third Berkley Symposium

on Mathematics, Statistics and Probability, 4, 81±108.

Bascompte, J. & SoleÁ, R.V. (1998). Spatiotemporal patterns in

nature. Trends Ecol. Evol., 5, 173±174.

Bjùrnstad, O.N. (2000). Cycles and synchrony: two historical

`experiments' and one experience. J. Anim. Ecol., 69, 869±873.

Bolker, B.M. & Grenfell, B.T. (1995). Space, persistence and

dynamics of measles epidemics. Phil. Trans. Royal Soc. Lond. B,

348, 309±320.

Bolker, B.M. & Grenfell, B.T. (1996). Impact of vaccination on the

spatial correlation and persistence of measles dynamics. Proc.

Natl. Acad. Sci USA, 93, 12648±12653.

Brown, J.H. & Kodric-Brown, A. (1977). Turnover rates in insular

biogeography: effect of immigration on extinction. Ecology, 58,

445±449.

Dieckmann, U., Law, R. & Metz, J. (2000). The Geometry of Ecological

Interactions. Cambridge University Press.

Earn, D.J.D., Rohani, P., Bolker, B.M. & Grenfell, B.T. (2000). A

simple model for complex dynamical transitions in epidemics.

Science, 287, 667±670.

Earn, D.J.D., Rohani, P. & Grenfell, B.T. (1998). Persistence,

chaos and synchrony in ecology and epidemiology. Proc. Royal

Soc. Lond. B, 265, 7±10.

Fine, P.E.M. & Clarkson, J.A. (1982). Measles in England and

Wales I. An analysis of factors Underlying Seasonal Patterns.

Internat. J. Epidemiol., 11, 5±14.

FinkenstaÈdt, B. & Grenfell, B. (2000). Time series modelling of

childhood diseases: a dynamical systems approach. J. Royal Sta-

tistical Soc. C, 49, 187±205.

Glendinning, P. & Perry, L.P. (1997). Melnikov analysis of chaos in

a simple epidemiological model Math. Bioscience, 35, 359±374.

Grenfell, B.T., Bolker, B.M. & Kleczkowski, A. (1995). Seasonality

and extinction in chaotic metapopulations. Proc. Royal Soc. Lond.

B, 259, 97±103.

Grenfell, B. & Harwood, J. (1997). (Meta) population dynamics of

infectious diseases. Trends Ecol. Evol., 12, 395±399.

Hanski, I. (1998). Metapopulation dynamics. Nature, 396, 41±49.

Hanski, I. (1999). Metapopulation Ecology. Oxford University Press,

Oxford.

Hanski, I. & Gilpin, M.E., eds. (1997). Metapopulation Biology: Ecol-

ogy, Genetics and Evolution. Academic Press.

Hassell, M.P., Comins, H. & May, R.M. (1991). Spatial structure

and chaos in insect population dynamics. Nature, 353, 255±258.

Jansen, V.A.A. & Lloyd, A.L. (2000). Local stability analysis of

spatially homogeneous solutions of multi-patch systems.

J. Mathemat. Biol., 41, 232±252.

Jeger, M.J. (1989). Spatial Components of Plant Disease Epidemics.

Prentice Hall.

Spatial coupling in epidemiological systems 27

Ó2002 Blackwell Science Ltd/CNRS



de Jong, M.C.M. et al. (1995). How does transmission of infection

depend on population size? In: Epidemic Models: Their Structure and

Relation to Data, ed. Mollison, D. Cambridge University Press,

pp. 84±94.

Keeling, M.J. (2000). Metapopulation moments: coupling, sto-

chasticity and persistence. J. Anim. Ecol., 69, 725±736.

Keeling, M.J. & Grenfell, B.T. (1997). Disease extinction and com-

munity size: modeling persistence measles. Science, 275, 65±67.

Keeling, M.J., Rohani, P. & Grenfell, B.T. (2001a). Seasonally-

forced disease dynamics explored as switching between attrac-

tors. Physica D, 148, 317±335.

Keeling, M.J., Woolhouse, M.E.J., Shaw, D.J., Matthews, J., Chase-

Topping, M., Haydon, D.T., Cornell, S.J., Kappey, J., Wilesmith

J. and Grenfell, B.T. (2001b) Dynamics of the 2001 UK foot and

mouth epidemic: stochastic dispersal in a heterogeneous land-

scape. Science, 294, 813±817.

Levins, R. (1969). Some demographic and genetic consequences of

environmental heterogeneity for biological control. Bull. Ento-

molog. Soc. America, 15, 237±240.

Lloyd, A.L. & May, R.M. (1996). Spatial Heterogeneity in Epidemic

Models. J. Theoret. Biol., 179, 1±11.

McCallum, H. et al. (2001). How should pathogen transmission be

modelled? Trends Ecol. Evol., 16, 295±300.

Ranta, E., Kaitala, V. & Lundberg, P. (1997). The spatial dimension

in population ¯uctuations. Science, 278, 1621±1623.

Renshaw, E. (1991). Modelling Biological Populations in Space and Time.

University Press, Cambridge.

Rohani, P., Earn, D.J., Finkenstadt, B. & Grenfell, B.T. (1998).

Population dynamic interference among childhood diseases.

Proc. Royal Soc. Lond. B, 265, 2033±2041.

Rohani, P., Earn, D.J.D. & Grenfell, B.T. (1999). Opposite pat-

terns of synchrony in sympatric disease metapopulations. Science,

286, 968±971.

Rohani, P., May, R.M. & Hassell, M.P. (1996). Metapopulations

and equilibrium stabilityÐthe effects of spatial structure. J.

Theoret. Biol., 181, 97±109.

Ruxton, G.D. (1996). Dispersal and chaos in spatially struc-

tured modelsÐan individual-level approach. J. Anim. Ecol., 65,

161±169.

Ruxton, G.D. & Rohani, P. (1998). Fitness-dependent dispersal in

metapopulations and its consequences for persistence and syn-

chrony. J. Anim. Ecol., 67, 530±539.

Schwartz, I.B. & Smith, H.L. (1983). In®nite subharmonic bifurca-

tion in an SEIR epidemic model. J. Mathemat. Biol., 18, 233±253.

Swinton, J. & Gilligan, C.A. (1996). Dutch elm disease and the

future of the elm in the UK: a quantitative analysis. Phil. Trans.

Royal Soc. Lond. B, 351, 605±615.

Swinton, J., Harwood, J., Grenfell, B.T. & Gilligan, C.A. (1998).

Persistence thresholds for phocine distemper virus infection in

harbour seal Phoca vitulina metapopulations. J. Anim. Ecol., 67,

54±68.

Tilman, D. & Kareiva, P. (1997). Spatial Ecology. Princeton Uni-

versity Press.

Editor, M. Hochberg

Manuscript received 28 June 2001

First decision made 8 August 2001

Manuscript accepted 20 August 2001

A P P E N D I X I

Mechanistic equations for populations of equal sizes

dSxx

dt
� bNxx ÿ bSxx�Ixx � Iyx�=�Nxx �Nyx�
ÿ dSxx � sSxy ÿ qSxx

dSxy

dt
� bNxy ÿ bSxy�Ixy � Iyy�=�Nxy �Nyy�
ÿ dSxy � qSxx ÿ sSxy

dIxx

dt
� bSxx�Ixx � Iyx�=�Nxx �Nyx� ÿ gIxx

ÿ dIxx � sIxy ÿ qIxx �6�
dIxy

dt
� bSxy�Ixy � Iyy�=�Nxy �Nyy� ÿ gIxy

ÿ dIxy � qIxx ÿ sIxy

dNxx

dt
� bNxx ÿ dNxx � sNxy ÿ qNxx

dNxy

dt
� bNxy ÿ dNxy � qNxx ÿ sNxy

where x � 1 or 2 and y 6� x. This formulation corres-

ponds to individuals leaving their permanent population at

rate q and returning at rate s (Fig. 1). Note that individuals

inherit their parents' permanent location, irrespective of

where they are born. Susceptible individuals can only catch

the infection from infectious individuals in the same

location.

A P P E N D I X 2

Populations of different sizes

When the two populations are of different sizes then we

necessarily have to consider that the parameter l may be

dependent upon Nx and Ny. However, it would seem sensible

to assume that the time spent in the other community (s)1) is

independent of the population sizes. To approximate the

value of l, let us assume that individuals (in either population)

randomly visit other individuals (irrespective of location) at a

rate cs. The value of q and therefore l can be calculated from

the rate of visiting an individual in the other population. qx is

the rate at which someone in x visits someone in y, and is

calculated as the visiting rate times the probability that the visit

is to someone in y:

qx � cs
Ny

Nx �Ny

) lx � c
Ny

Nx �Ny

;

hence the value of l is maximized when the other

(temporary) population is very large in comparison to the

permanent population. We note that the total number of
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individuals currently in a population Px � Nxx + Nyx, is no

longer equal to the number of individuals that belong to that

population; but again we expect rapid convergence of the

distribution of individuals between patches such that,

Px ! Nx

1

1� lx

�Ny

ly

1� ly

We can now reformulate the full model,

dSxx

dt
� Nxxb ÿ bSxx�Ixx � Iyx�=Px ÿ dSxx � sSxy ÿ lxsSxx

dSxy

dt
� Nxyb ÿ bSxy�Ixy � Iyy�=Py ÿ dSxy � lxsSxx ÿ sSxy

dIxx

dt
� bSxx�Ixx � Iyx�=Px ÿ gIxx ÿ dIxx � sIxy ÿ lxsIxx

dIxy

dt
� bSxy�Ixy � Iyy�=Py ÿ gIxy ÿ dIxy � lxsIxx ÿ sIxy

�7�
Such a formulation still retains the same value of

R0 (irrespective of movement rates) and still allows us to

reduce the system to four dimensions, although the coupling

terms are more complex.

dSx

dt
� bN ÿ bSx�Ix�1ÿ rxx� � Iyrxy�=Nx ÿ dSx

dIx

dt
� bSx�Ix�1ÿ rxx� � Iyrxy�=Nx ÿ gIx ÿ dIx : �8�

In the limit where s is large, the four coupling terms rxx,

rxy, ryx and ryy are found to converge to two asymptotic

values,

rxx ! ryx ! rx � Ny

�1� lx��1� ly�
ly

Px

� lx

Py

� �
ryy ! rxy ! ry � Nx

�1� lx��1� ly�
ly

Px

� lx

Py

� �
:

A P P E N D I X 3

Theoretical calculation of the correlation

Throughout this section we shall assume that the two

populations are of equal sizes, as this greatly simpli®es the

mathematics and notation. Let CXY be the covariance

between X and Y in the same population,

CXY � CYX � hX1Y1i ÿ hX1ihY1i � hX2Y2i ÿ hX2ihY2i

and �CXY be the covariance when X and Y are in different

populations,

�CXY � hX1Y2i ÿ hX1ihY2i � hX2Y1i ÿ hX2ihY1i:
Where h�i refers to the long-term time average of a given

quantity. We can now formulate an equation for the

covariance, �CII if we make a moment closure approximation

and ignore the third order cumulants (Renshaw 1991;

Keeling 2000).

d

dt
�CII � 2hb�1ÿr�I1S1I2=N �brI2S1I2=N ÿ gI1I2ÿdI1I2i

ÿ2I2hb�1ÿr�I1S1=N �brI2S1=N ÿ gI1ÿdI1i
� 2b�1ÿr�S �CII=N �2brSCII=N ÿ2g �CII

ÿ2d �CII �2bI �CSI=N :

If we make the simplifying assumption that I �CSI=N is

small, the differential equation has the ®xed point,

�C �II �
brS �C �II

gN � dN ÿ b�1ÿ r�S � :
From the equation for the number of infectious individuals,

we ®nd that

S � � gN � dN

b
ÿ C �SI

I
and therefore obtain the following equation for the

correlation,

C �
�C �II

C �II
� r

bC �
SI

gI �N�dI �NÿbC �
SI

� r
: �9�

For simplicity we set,

n � bC �SI

gI �N � dI �N ÿ bC �SI

�10�

and calculate the value of n from numerical simulations.
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